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Abstract
This paper aims at the analysis of diffusive properties of unidimensional
mechanical systems in the environment of maxima and minima of the potential.
It begins with a study of the properties of the singular solutions of the Hamilton–
Jacobi–Yasue equation in the above-mentioned environment, in both strong or
very small frictional forces.

For the quartic symmetrical double-well potential, approximate solutions
are found for local validity and the diffusion operator is then calculated in the
limits of deep wells and small temperature, the regime being supposed to be
aperiodic, with high or moderate values of frictional coefficient. This equation
is proved to be nonunique. This operator is then reduced to second order
by imposing suitable boundary conditions. Thus an appropriate eigenvalue
equation is obtained to describe stationary states in the environment of extremal
points of the potential energy function. The main interest of this work
relies upon the fact that transition times between wells mainly depend upon
fluctuations near the saddle point.

PACS numbers: 05.45.−a, 82.40.Bj

1. Introduction

In the past there has been wide interest in the study of diffusion in markedly nonlinear
oscillators. These systems exhibit profiles of the potential energy function which are
characterized by more or less deep wells separated by barriers which are saddle points of
the potential.

Much effort was devoted to the study of the relaxation time of the system for jumping
from one well to the neighbouring one [1–11], or to the oscillation frequency of the probability
density for alternating among different adjacent sites [3, 10, 11]. Related quantities of interest
for applications are the mean first-passage time (MFPT) for reaching the barrier top from a
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situation of confinement inside a single well, or the relaxation time (the eigenvalue) of the
corresponding probability density [5, 9, 10].

Most earlier work, however, was limited to systems that experience strong frictional
forces, which therefore can be described by a simple Smoluchowski equation for diffusion in
configuration space [6, 8]. Actually the evaluation of diffusion parameters or time constants
of strongly nonlinear systems, such as double wells, necessitates an accurate description of
diffusive behaviour up to the saddle point.

Configurational diffusion equations yielding the time evolution of the two-time transition
probability density are suitable for computing either eigenvalues or averages of properties
which only depend upon the system coordinates. It is, therefore, tempting to apply the
technical apparatus developed by this author in previous papers [12–18] in order to evaluate
the diffusion parameters of dynamical systems, to the description of these systems in the
neighbourhood of saddle points, taking nonlinearity into account.

The diffusion operator obtained in this way describes the evolution of the system from
the given initial preparation and, therefore, admits a unique solution as a transition probability
density, provided the initial data are conveniently specified. For this same reason this
operator has a high degree of arbitrariness, because it has the form of a linear combination of
derivatives of a unique function, which add up to zero [19]. In order to specify this operator
further one has to add supplementary conditions requiring the coefficients of derivatives to
be independent of initial data. It has been proved (actually for a quadratic potential) that
in the long time limit this operator becomes adequate to describe arbitrary fluctuations over
the stationary state [18, 19]. It is this limiting equation that will be deduced here, which
admits the projected canonical distribution as an equilibrium solution. It is expected that this
operator should be unique, because it is required to describe the time evolution of arbitrary
fluctuations.

For these reasons it will be convenient to represent the drift velocity by the singular
solutions to the Hamilton–Jacobi–Yasue–Riccati (HJYR) equation, which represent the
limiting form of the velocity field after the transients because the initial conditions have
faded out [14]. In the overdamped regime, these solutions and the path integrals involved
in the calculations are localized so that it will be possible to calculate diffusion parameters
separately for the regions of convexity or concavity of the potential profile.

Therefore, for any given average current, such as the singular solution to the HJYR
equation, the diffusion coefficient results to be determined univocally by the equilibrium
probability density, if the equation itself is supposed to be second order. This paper is
organized as follows: In section 2, a classification of the solutions to the HJY equation
(without the Riccati term) is given. They belong to two classes, according to their behaviour
in the vicinity of stationary points of the potential energy function.

In section 3, the properties of the singular solutions are analysed, in the environment of
stationary points of the potential energy, separately either for high and moderate values of the
frictional coefficient β, or in the limit of low values of β. The stationarity of singular solutions
is especially discussed. Actually, where stationarity is not realized, the diffusion coefficient is
divergent.

In section 4, the basic formulae for the evaluation of the diffusion operator are reproduced
from previous work by this author, by focusing especially upon systems with high or moderate
values of frictional coefficient. For these systems the diffusion operator may be evaluated
separately around different regions of the potential.

In section 5, we consider the special model described by a symmetric quartic potential,
and the diffusion operator is evaluated for the region around the midpoint, which can be either a
saddle point or a well, according to the sign of the parameters. The calculations are performed
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by expanding in powers of the inverse distance between the two wells (or saddle points). The
result is an approximate fourth-order diffusion operator for the transition probability density.

In section 6, this evolution operator is compared with the analogue which was obtained
previously by expansion in powers of 1

β
. The two equations turn out to be different.

In section 7, the equation obtained here is reduced to second order by imposing suitable
boundary conditions on the solutions.

2. General properties of singular solutions of the HJY equation near extremal points of
the potential energy

The singular solution to the HJY equation related to a one-dimensional dynamical system
evolving in the potential U(q) with frictional coefficient β and mass m satisfies the following
equation [12, 17, 18]:

1

2m
φ′(q)2 + U(q) + βφ(q) = 0 (2.1)

obtained from equation (2.4) of [18] by equating to zero the time derivative of the action φ.
The prime denotes derivatives over spatial coordinate q, t is the time coordinate and t0 is the
initial time of preparation of the system.

The solutions of the HJY equation obtained by equating to zero the time derivative, are
singular solutions in the sense that [18]

∂φ

∂t
= − ∂φ

∂t0
= 0 (2.1′)

if U(q) is independent of time. There is left, however, the dependence upon a second constant
representing initial conditions, which fades out as O(e−β(t−t0)) [12]. These solutions are
expected to match, in the limit β → 0, the singular solution to the HJ equation with β = 0
(which is obtained by equating to zero the derivatives of the complete integral with respect to
both parameters), because this solution is tangent to every integral surface of the HJ equation.
Actually, one may think of a damped trajectory as one which is following a particular undamped
characteristic trajectory during an infinitesimal time interval, and later prosecutes through the
contiguous trajectory with a slightly lower value of the energy, during the next infinitesimal
time interval. In the limit of infinitesimal frictional coefficient, it is therefore tangent to every
undamped trajectory and consequently to every integral surface which is tangent to it.

We consider solutions to equation (2.1) ϕ(q) = φ(q), in the vicinity of extremal points
of the potential U(q), that is points q̂ where

U ′(q̂) = 0. (2.2)

By differentiation of equation (2.1) and using (2.2), putting p(q) = φ′(q) follows

p(q̂)

[
1

m
p′(q̂) + β

]
= 0 (2.3)

from which one of the two alternatives follows, or both:

p(q̂) = 0 (2.4)

p′(q̂) = −mβ. (2.5)

From the above equations we can argue the following:
(i) suppose that (2.4) is true, then upon substitution into equation (2.1),

U(q̂) + βϕ(q̂) = 0. (2.6)
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Expanding around q̂

U(q) = U(q̂) + �U(q) (2.7)

ϕ(q) = ϕ(q̂) + �ϕ(q) (2.8)

p(q) = p(q̂) + �p(q) (2.9)

there follows
1

2m
(�p)2 + �U(q) + β�ϕ(q) = 0 (2.6′)

which to second order gives[
1

2m
ϕ′′(q̂)2 +

1

2
U ′′(q̂) +

1

2
βϕ′′(q̂)

]
(q − q̂)2 = 0 (2.10)

from which ϕ′′(q̂) can be calculated, as well as derivatives of higher orders, from similar
equations. The important fact is that equations (2.6′) and (2.10) hold true for every stationary
point of the potential where equation (2.4) is satisfied.

(ii) Equation (2.5) gives in the place of (2.6), (2.6′) and (2.10)

1

2m
p(q̂)2 + U(q̂) + βϕ(q̂) = 0 (2.11)

1

2m
�p(q)2 +

1

m
p(q̂)�p(q) + �U(q) + β�ϕ(q) = 0 (2.11′)

[
1

2m
p(q̂)p′′(q̂) +

1

2
U ′′(q̂)

]
(q − q̂)2 = 0 (2.12)

which yields p′′(q̂), etc. The expansion of ϕ(q) around q̂ as follows:

ϕ(q) = ϕ(q̂) + p(q̂)(q − q̂) − 1

2
mβ(q − q̂)2 − 1

3!

mU ′′(q̂)

p(q̂)
(q − q̂)3 + h.o.t. (2.13)

If U(q) is symmetric around q̂, it can be proved that equations (2.4) and (2.9) with β > 0
yield ϕ(q) symmetric around q̂, while equations (2.5) and (2.9) with β > 0 yield ϕ(q) without
definite symmetry.

Equations (2.4) and (2.9) with β = 0 yield �ϕ(q) symmetric or antisymmetric around q̂,
but, if equation (2.4) is not true, equations (2.5) and (2.9) with β = 0 yield �ϕ(q) necessarily
antisymmetric around q̂.

3. Analysis of the singular solutions of the HJY equation in the proximity of stationary
points of the potential energy

3.1. High values of β

The singular solutions of the HJY equation for high or moderate values of frictional coefficient
have been classified and discussed in [13, 18]. The first singular solution may be expanded

φ(q) = −m

2
β(q − Q)2 + c(q − Q) +

d

β
+

q − Q

β

∫ q

dη
U(η)

(η − Q)2
+ O

(
1

β2

)
(3.1)

where c, d and Q are constants. If U(q) = 0 there results

p(q) = −mβ(q − Q) + c + O

(
1

β2

)
(3.2)
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so that from equation (2.1) follows upon substitution, by redefining Q:

d = −c2

2m
O

(
1

β2

)
= 0 (3.3)

φ(q) = − 1
2mβ(q − Q)2 + const. (3.3′)

This solution is of type (2.5), that is kinetic type, except for q = Q, where equation (2.4) is
also true.

If now U(q) = 1
2mω2

0(q − Q)2

then

φ(q) = −1

2
mβ(q − Q)2 + c(q − Q) +

d

β
+

q − Q

β

1

2
mω2

0(q − Z) + O

(
1

β2

)
. (3.4)

Substituting now into equation (2.1) there follows

c = d = 0 Q = Z. (3.5)

Consequently, this solution is of coordinate type. Therefore, the first singular solution can be
either of kinetic type or of coordinate type, or both.

The second singular solution has an expansion in powers of 1
β

whose first term is precisely

O
(

1
β

)
. Therefore

p′(q) �= −mβ if β > 0. (3.6)

Consequently, this solution is of coordinate type, that is every stationary point of the potential
energy is a point of equilibrium. This can also be proved by the solution of the recursive
equations for the coefficients of the expansion in powers of 1

β
(see, for instance, [18]

equation (3.11)). Actually it can be proved that if p−λ(q) is proportional to U ′(q) for
1 � λ � n, then p−n−1(q) also bears the factor U ′(q).

3.2. Low values of β

For low values of the frictional coefficient β, the HJY equation may be expanded conveniently
in powers of β. The first term of the expansion corresponding to β = 0 yields

p(0)(q) = ±
√

2m(E − U(q)) (3.7)

so that p(0)(q) vanishes if and only if

E = U(q) (3.8)

while

p(0)′(q) = ∓1

2

√
2m

U ′(q)√
E − U(q)

(3.9)

is always zero in a stationary point q̂ of the potential energy function, where p(0)(q̂) �= 0.

There follows that the zeroth-order solution p(0)(q) is always of kinetic type, as might be
expected, except for points where E = U(q̂). Now, if p(0)(q̂) �= 0, it is also nonzero p(q̂)

for sufficiently small values of β, therefore the stationary point is of kinetic type, in the whole
range of values of β.

From the above arguments there follows that since the second singular solution is always
of coordinate type in every stationary point of the potential energy function (in the zone of
high values or moderate values of frictional coefficient), while every solution of equation (2.1)
in the limit of small β can be of coordinate type only at those points where equation (3.8)
is satisfied, then the kinetic character of the singular solution cannot be conserved at every
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stationary point, if the potential energy function has more than a single point of stationarity
(except for U(q) identically zero). Actually, with the exception of these special forms of the
potential there is no solution which is entirely of coordinate type for β → 0.

In the arguments developed above, we have assumed that the series in 1
β

represents the
solution at least in an asymptotic sense in a suitable environment of β = ∞. This assumption
is of course implicit in the common guess that stipulates

p(q) ∼= −U ′(q)

β
(3.12)

in all the interval of definition. The results presented here are therefore an extension of the
rather trivial ones that follow from equation (3.12), which proves that singular solutions have
been customarily considered, in a heuristic way, the most appropriate to the description of
diffusion phenomena. This can be understood by considering that equation (3.12) represents
the limiting value of velocity for every trajectory for t − t0 � 1

β
, when the initial kinetic

energy has been consumed by frictional forces.
Actually, the singular solutions are usually defined through the condition of stationarity of

the complete integral of the full HJYR equation, with respect to the parameters, which allows
for the determination of these parameters (see for instance [18]). Consequently, they are
solutions to the equations of motion independent of initial conditions specifying any particular
trajectory, thus being well suited to describe the diffusive motion in the asymptotic regime,
where the memory of initial data has faded out. It is precisely this condition of elimination of a
memory term which forces the drift velocity to obey a HJYR equation, thus adding corrections
to the leading term proportional to 1

β
(equation (3.12)).

The fundamental character of singular solutions for description of diffusion has been
discussed in [18, 19].

4. Diffusion equation in the neighbourhood of stationary points of the potential energy
for moderate or high values of frictional coefficient

The second singular solution for the HJY equation can be worked out explicitly in the
environment of the stationary points of the potential energy by expansion in powers of the
coordinate difference from the point of stationarity and using equations (3.6), (2.4) and (2.10).
Then the diffusion operator may be calculated from this approximate solution, in the limit of
zero temperature, and very small deviations from a parabolic potential profile. The procedure
follows from [14–18] and requires an expansion of the response functions in powers of
fluctuations of fast variables, with the evaluation of the relevant correlation functions, which
is here needed to leading order only.

So we have

D (0)(t, t0) = 1

m2

∫ t

t0

dτ e−β(t−τ)

∫ τ

−∞
dσ

∫ t

−∞
dsg(τ, σ )g(τ, s)〈k(s)k(σ )〉 (4.1)

D (1)(t, t0) = − 1

m3

∫ t

−∞
ds

∫ t

t0

dτ

∫ τ

−∞
dξ

∫ ξ

t0

dη

∫ η

−∞
dσg(t, s)

× exp

{
1

m

∫ t

τ

p′(q(µ)) dµ

}
g(τ, ξ)

[
1

m
p′′(q(ξ))p̃(ξ) + g′(q(ξ))

]

× exp

{
1

m

∫ ξ

η

p′(q(µ)) dµ

}
g(η, σ )〈k(s)k(σ )〉 (4.1′)
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with the following [17, 18]

D(t, t0) = D (0)(t, t0) + D (1)(t, t0) + · · · (4.2)

D̂q(t, t0)〈δ(q(t) − q)〉 = 〈δ(q(t) − q)D(t, t0)〉. (4.2′)

In the above formulae, the hat over an uppercase letter denotes an operator and the brackets
stochastic averages over the realizations {k(s),−∞ < s < +∞} of the random Gaussian force
with zero mean [20], where

〈k(t)k(s)〉 = 2mβT δ(t − s) ∀ t, s (4.3)

where T is the temperature. Moreover δ denotes a Dirac δ-function and the functions g and g
are defined as follows [14–18]:

g(t, s) = exp

{
− 1

m

∫ t

s

p′(q(α)) dα

}
(4.4)

g(q) = −D̂tr
qp′′(q). (4.4′)

The diffusion equation then follows
∂P

∂t
= − ∂

∂q

1

m
p(q)P (q, t) +

∂

∂q
D̂q(t, t0)P (q, t) (4.5)

where P(q, t) = P(q, t/q0, t0) is the two-time conditional transition probability density.
The memory term [16–18] in equation (4.5) has been omitted, consistent with the present
approximations (see below).

5. Specific models and calculations

5.1. Position of the problem

The calculations have been carried out along these lines (see section 4) for a cubic potential
energy profile, by expanding the solution to the HJY equation in the central region of the
potential well, and the results were reported in [10].

Hereafter we shall examine in some detail a quartic potential, which can be represented
analytically by the function

U(q) = 1

2
m

ω2
0

R2
(q2 − Rq)2. (5.1)

By defining

q − R

2
= r (5.2)

there follows

U(r) = 1

2
m

ω2
0

R2

((
R

2

)2

− r2

)2

(5.1′)

so that the potential is manifestly symmetric about the midpoint r = 0. This point is a
maximum or a minimum point according to the sign of ω2

0. In the range of values of β where
the asymptotic expansion in powers of 1

β
is valid for the second singular solution, and therefore

equation (3.6) holds, the expansion of the solution in powers of the coordinate is given by
equations (2.9) and (2.10) and the equations which follow.

However, since it has been shown in section 3 that the second singular solution cannot
be of coordinate type in every stationary point of the potential energy, there follows that the
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range of validity of the expansion does not cover all values of β. Note, however, that p(q) is
exactly solvable in the limit β → 0 and small temperature (equation (3.7)).

The solution to the HJY equation which has been calculated and used in this work is the
following:

1

m
p(r) = 1

m
p′(0)r +

1

6m
p′′′(0)r3 + h.o.t. (5.3)

where

1

m
p′(0) = −

(
1

2
β −

√
1

4
β2 − U ′′(0)

m

)
(5.4)

1

m
p′′′(0) = U ′′′′(0)

β − 4
√

1
4β2 − U ′′(0)

m

. (5.4′)

The formulae above allow us to evaluate the coefficients of the diffusion equation (4.5) to
the desired order of approximation through the calculation of the relevant stochastic averages
which appear in equations (4.1) and (4.1′) and in the higher orders of approximation.

5.2. Evaluation of D (0)(t, t0)

From equations (4.1), (4.3) and (5.3), we obtain

〈δ(r(t) − r)D (0)(t, t0)〉 = 2mβT

m2

∫ t

t0

dτ e−β(t−τ)

∫ τ

−∞
dσ e−2( 1

m
p′(0)+β)(τ−σ )

×
[
〈δ(r(t) − r)〉 − 1

m
p′′′(0)

∫ τ

σ

dα〈δ(r(t) − r)r(α)2〉
]

+ h.o.t.

= 2βT

m
〈δ(r(t) − r)〉 1

2β
(

1
m
p′(0) + β

) − 2βT

m

∫ t

t0

dτ e−β(t−τ) 1

m
p′′′(0)

×
∫ τ

−∞
dα〈δ(r(t) − r)r(α)2〉

∫ α

−∞
dσ e−2( 1

m
p′(0)+β)(τ−σ ) + h.o.t. (5.5)

In equation (5.5), the Eulerian component of momentum has been expanded up to cubic terms,
according to equation (5.3), and subsequently the exponentials have been expanded to the next
lowest order in powers of 1

R
(i.e. to O( 1

R2 )).
The next step appears to be the evaluation of the correlation functions appearing in

equation (5.5): application of Novikov’ theorem yields [21–26]

〈δ(r(t) − r)r(α)2〉 = 〈δ(r(t) − r)r(α)〉〈r(α)〉
+
∫ t

−∞
ds

〈
δ

δk(s)
[δ(r(t) − r)r(α)]

〉 ∫ α

−∞
dσ

〈
δr(α)

δk(σ )

〉
〈k(s)k(σ )〉

=
∫ t

−∞
ds

∫ α

−∞
dσ

〈
δ′(r(t) − r)

δr(t)

δk(s)
r(α)

〉 〈
δr(α)

δk(σ )

〉
〈k(s)k(σ )〉

+
∫ t

−∞
ds

∫ α

−∞
dσ

〈
δ(r(t) − r)

δr(α)

δk(s)

〉 〈
δr(α)

δk(σ )

〉
〈k(s)k(σ )〉

= 2mβT

∫ α

−∞
dσ

〈
δ′(r(t) − r)

δr(t)

δk(σ )
r(α)

〉 〈
δr(α)

δk(σ )

〉

+ 2mβT

∫ α

−∞
dσ

〈
δ(r(t) − r)

δr(α)

δk(σ )

〉 〈
δr(α)

δk(σ )

〉
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= 2mβT

{∫ α

−∞
dσ 〈δ′(r(t) − r)r(α)〉

〈
δr(t)

δk(σ )

〉 〈
δr(α)

δk(σ )

〉

+
∫ α

−∞
dσ 〈δ(r(t) − r)〉

〈
δr(α)

δk(σ )

〉2

+
∫ α

−∞
dσ

〈
δr(α)

δk(σ )

〉 ∫ t

−∞
ds′
∫ t

−∞
dσ ′

×
[〈

δ

δk(s′)
δ′(r(t) − r)r(α)

〉 〈
δ

δk(σ ′)
δr(t)

δk(σ )

〉

+

〈
δ

δk(s′)
δ(r(t) − r)

〉 〈
δ

δk(σ ′)
δr(α)

δk(σ )

〉]
〈k(s′)k(σ ′)〉

}
(5.6)

where δA/δf (ξ) denotes the functional derivative of functional A over the function f (ξ).
Now in the limit T → 0 one can write

〈δ(r(t) − r)r(α)2〉 ∼= 2mβT

∫ α

−∞
dσ 〈δ′(r(t) − r)r(α)〉

〈
δr(t)

δk(σ )

〉 〈
δr(α)

δk(σ )

〉

= (2mβT )2
∫ α

−∞
dσ

∫ α

−∞
dσ ′

〈
δ′′(r(t) − r)

δr(t)

δk(σ ′)

〉 〈
δr(t)

δk(σ )

〉 〈
δr(α)

δk(σ )

〉 〈
δr(α)

δk(σ ′)

〉

∼= (2mβT )2
∫ α

−∞
dσ

∫ α

−∞
dσ ′〈δ′′(r(t) − r)〉

〈
δr(t)

δk(σ )

〉〈
δr(t)

δk(σ ′)

〉〈
δr(α)

δk(σ )

〉〈
δr(α)

δk(σ ′)

〉
= 〈δ′′(r(t) − r)〉〈r(t)r(α)〉2

c (5.7)

where the subscript c denotes a cumulant average. Continuing along these lines all the
leading terms can be obtained in the limit of small temperature, which are proportional to
T n〈δ(n)(r(t) − r)〉 (see equation (5.14)).

5.3. Evaluation of conditional correlation functions

Now the correlation functions, such as (5.7) or (5.24), may be evaluated following different
approximate procedures:

(i) The response function in the frozen-trajectory approximation (FTA) can be written
as [10–18](

δr(t)

δk(s)

)FTA

= 1

m

∫ t

s

dτ exp

{
1

m

∫ t

τ

p′(r(α)) dα − 1

m

∫ τ

s

p′(r(α)) dα − β(τ − s)

}
. (5.8)

p(r) is expanded around the equilibrium point r = −R
2 (or q = 0), so as to make q small

with respect to R. This was done in [10], so as to obtain, from equations (4.1) and (4.1′), the
diffusion equation for a system in the equilibrium state, in the neighbourhood of the minimum
of the potential. This equation can be considered approximately valid up to the saddle point
by analytical continuation.

(ii) By computing 1
m
p′(r) from equation (5.3) with sufficient accuracy, the correlation

function of coordinate and, consequently, the diffusion operator can be found to converge.
Therefore we expand 1

m
p′(r) according to equation (5.3), with p′(0), p′′′(0) given by

equations (5.4) and (5.4′) and

1

m
p′′′′′(0) =

1
m2 p

′′′(0)2

3
5m

p′(0) + 1
10β

, etc. (5.9)

The stationary equilibrium distribution Peq(q) being supposed to be close to a Gibbs canonical
distribution; at small temperature the particle jumps from one potential well to the other, being
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practically at rest between two jumps. There follows:

〈r(t)2〉 = R2

4
(5.10)

〈r(t)4〉 = R4

16
(5.10′)

and so on. Furthermore

〈r(t)2r(s)2〉 = 〈r(t)2〉〈r(s)2〉 (5.11)

similar relations being valid for higher cumulants. Consequently, it is convenient to put, in
the small temperature limit

1

m
〈p′(r)〉 = 1

m

∞∑
n=0

1

2n!
p(2n+1)(0)

(
R

2

)2n

= 1

m
p′
(

±R

2

)
(5.12)

and the response functions (5.8) become(
δr(t)

δk(s)

)FTA

= 1
2
m
〈p′(r)〉 + β

1

m

(
exp

{
1

m
〈p′(r)〉(t − s)

}

− exp

{
−
[

1

m
〈p′(r)〉 + β

]
(t − s)

})
. (5.13)

Now the decoupling procedure which has been followed in order to evaluate the lhs of
equation (5.6) allows us to evaluate the constrained averages by averaging over equilibrium
distribution functions. Since this equilibrium distribution is very small in the zone of interest
here, namely the saddle point, it is hopeless to obtain reliable results by using only a few
terms of this expansion. Proceeding further in the evaluation of the lhs of (5.7) there results,
to leading order in the temperature

〈δ(r(t) − r)r(α)2〉 = 2mβT 〈r(t)r(α)〉
[
δ′′(r(t) − r)

∫ α

−∞
dσ

〈
δr(t)

δk(σ )

〉 〈
δr(α)

δk(σ )

〉

+ δ′′′(r(t) − r)2mβT

∫ t

−∞
dσ

∫ α

−∞
dτ

〈
δr(t)

δk(σ )

〉 〈
δ2r(t)

δk(σ )δk (τ )

〉 〈
δr(α)

δk (τ )

〉

+ δ′′′′(r(t) − r)(2mβT )2
∫ t

−∞
dσ

∫ t

−∞
dτ

×
∫ α

−∞
dξ

〈
δr(t)

δk(σ )

〉 〈
δ2r(t)

δk(σ )δk (τ )

〉 〈
δ2r(t)

δk(τ )δk(ξ)

〉 〈
δr(α)

δk(ξ)

〉
+ · · ·

]

= 〈r(t)r(α)〉
∞∑

n=0

(−1)n+1

n!
〈r(t)nr(α)〉c

(
∂

∂r

)n+1

〈δ(r(t) − r)〉 (5.14)

where the cumulant average is defined, for instance, in [27–29] and consists of only those
averages which are linked. All the terms of the expansion (5.3) are of the same order in 1

R
,

since the most probable values of r are ±R/2.
From equation (5.13) follows

〈r(t)r(α)〉c = −T

m
(

2
m
〈p′(r) + β〉)

[
exp

{
1
m
〈p′(r)〉(t − α)

}
1
m
〈p′(r)〉 +

exp
{− 1

m
〈p′(r) + β〉(t − α)

}
1
m
〈p′(r)〉 + β

]

(5.15)

〈r(t)2〉 = T

U ′′(q = 0)
(5.15′)
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because of (5.12). When substituted into the rhs of equation (5.7), equation (5.15′) yields

〈δ(r(t) − r)r(t)2〉 = 〈δ′′(r(t) − r)〉 T 2

[U ′′(q = 0)]2

∼= [U ′′(r = 0)]2

T 2
r2 T 2

[U ′′(q = 0)]2
〈δ(r(t) − r)〉 (5.16)

having assumed |r| � R and the distribution of probability density to be canonical [13, 19].
Equation (5.16) shows that the full expansion (5.14) is needed in order to obtain results
consistent with the canonical distribution of probability density.

(iii) The same argument proves that the ‘correlation function’

〈r(t)r(α)〉c = −T

m
(

2
m
p′(0) + β

)
[

exp
{

1
m
p′(0)(t − α)

}
1
m
p′(0)

+
exp

{− (
1
m
p′(0) + β

)
(t − α)

}
1
m
p′(0) + β

]

(5.17)

yields the correct result, when substituted into equation (5.7). Equation (5.17) cannot be
obtained by direct computation because the response function (5.8) diverges for large t-s when
p′(0) is substituted for p′(r) into the rhs.

Equation (5.17) can be postulated on the basis of the following arguments. The time
evolution of the conditional correlation function of the coordinate in a quadratic potential
profile [30] is univocally determined by the two roots of the characteristic equation, which
in the present circumstances are precisely the time factors in equation (5.17). This is a
consequence of the principle of regression of fluctuations and detailed balance [31–33]. The
coefficients of the exponentials may be determined from two further requirements: equation
(5.7), putting α = t , yields

〈δ(r(t) − r)〉r2 = 〈δ′′(r(t) − r)〉〈r(t)2〉2 (5.18)

〈δ(r(t) − r)ṙ(t)〉r = 〈δ′′(r(t) − r)〉〈r(t)2〉〈r(t)ṙ(t)〉. (5.18′)

Now on substituting Peq(r) for 〈δ(r(t) − r)〉 the boundary conditions can be obtained for
the ‘correlation function’〈r(t)r(α)〉 and its first derivative for α = t. To this end the lhs of
equation (5.18′) must be put equal to zero, because in a stationary state position velocity must
be uncorrelated. We recall that the ‘correlation function’ given by (5.17) has validity only
in the proximity of the saddle point, where |r| � R and therefore the potential profile is
approximately quadratic, and moreover for time intervals which are not much longer than 1

β
,

as requested by equation (5.5).
The above conditions determine the function (5.17) unequivocally except for the sign,

which however results from equation (5.24) below. In the same way all the correlation
functions of the form

〈δ(r(t) − r)r(α)n〉 t � α (5.19)

where n is a positive integer, are evaluated to leading order in T, and for short time intervals
such that |t − α| < 1

β
.

The ‘correlation function’ (5.17), however, has no physical reality, since the mean square
value of the coordinate cannot be negative. It can be defined in connection with formulae like
(5.7) and (5.24) below, in order to obtain expressions for these correlation functions which
have the correct time dependence and fulfil the appropriate boundary conditions for α = t , as
may be checked by substitution into equations (5.18) and (5.18′).
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Finally inserting equation (5.17) into (5.5) and (5.7), we can readily obtain

〈δ(r(t) − r)D (0)(t, t0)〉 = T

U ′′(0)

(
1

2
β −

√
1

4
β2 − U ′′(0)

m

)
〈δ(r(t) − r)〉

− T 3p′′′(0)

m4
(

2
m
p′(0) + β

) (
1
m
p′(0) + β

) 〈δ′′(r(t) − r)〉

×
[

1(
β − 2

m
p′(0)

)
2

m2 p′(0)2
+

β

4
(

1
m
p′(0) + β

)3 ( 2
m
p′(0) + 3β

)
+

1
1
m

p′(0)
(

1
m
p′(0) + β

) (
2
m
p′(0) + 3β

)
]

. (5.20)

5.4. Evaluation of D (1)(t, t0)

By expanding the response functions as in section 5.2, it follows that

〈δ(r(t) − r)D (1)(t, t0)〉 = −Tp′′′(0)

m2
(

1
m
p′(0) + β

)
×
∫ t

t0

dτ

∫ τ

−∞
dξ exp

{
−
(

1

m
p′(0) + β

)
(t + τ − 2ξ) +

1

m
p′(0)(t − τ )

}

×
〈
δ(r(t) − r)

[
1

m
r(ξ)p̃(ξ) − D̂tr

r

]〉
+ h.o.t. (5.21)

Then we write the full expression for p̃(ξ) and apply the usual decoupling procedure to the
fast variables as was done for instance in [18]:

〈δ(r(t) − r)r(ξ)p̃(ξ)〉 =
∫ ξ

−∞
ds〈δ(r(t) − r)r(ξ)g(ξ, s)[k(s) − g(r(s))]〉

=
∫ ξ

−∞
ds

∫ t

−∞
dσ

〈
δ′(r(t) − r)

δr(t)

δk(σ )
r(ξ)g(ξ, s)

〉
〈k(s)k(σ )〉

+
∫ ξ

−∞
ds

∫ ξ

−∞
dσ

〈
δ(r(t) − r)

δr(ξ)

δk(σ )
g(ξ, s)

〉
〈k(s)k(σ )〉

+
∫ ξ

−∞
ds

∫ ξ

−∞
dσ

〈
δ(r(t) − r)r(ξ)

δ

δk(σ )
g(ξ, s)

〉
〈k(s)k(σ )〉

−
∫ ξ

−∞
ds〈δ(r(t) − r)r(ξ)g(ξ, s)g(r(s))〉. (5.22)

By neglecting terms O(T 2)〈δ(r(t) − r)〉 and applying the usual transformations there results

〈δ(r(t) − r)D (1)(t, t0)〉 = −Tp′′′(0)

m2
(

1
m
p′(0) + β

)
×
∫ t

t0

dτ

∫ τ

−∞
dξ exp

{
−
(

1

m
p′(0) + β

)
(t + τ − 2ξ) +

1

m
p′(0)(t − τ )

}

×
[∫ ξ

−∞
dσ

〈
δ′(r(t) − r)

δr(t)

δk(σ )
r(ξ)g(ξ, σ )

〉
2mβT

+
〈
δ(r(t) − r)

(
D (0)(ξ, t0) − D̂tr

r

)〉 ]
+ h.o.t.
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∼= −2βT 2p′′′(0)

m
(

1
m
p′(0) + β

) ∫ t

t0

dτ

∫ τ

−∞
dξ exp

{
−
(

1

m
p′(0) + β

)
(t + τ − 2ξ)

+
1

m
p′(0)(t − τ )

}
〈δ′(r(t) − r)r(ξ)〉

∫ ξ

−∞

〈
δr(t)

δk(σ )
g(ξ, σ )

〉
dσ + h.o.t. (5.23)

The first averaged product is easily evaluated by the Novikov decoupling procedure and yields

〈δ′(r(t) − r)r(ξ)〉 = 〈δ′′(r(t) − r)〉〈r(t)r(ξ)〉c + h.o.t. (5.24)

Again equation (5.7) proves to behave correctly when substituted into the rhs of (5.24).
Evaluation of both sides of equation (5.24) for ξ = t , and assuming canonical equilibrium
gives

− ∂

∂r
〈δ(r(t) − r)〉r =

[(
−U ′′(0)r

T

)2

− U ′′(0)

T

]
T

U ′′(0)
〈δ(r(t) − r)〉 (5.25)

which is exact if 〈δ(r(t) − r)〉 is the canonical equilibrium distribution [13, 19]. Then the
calculation can proceed straight forwardly and yields

〈δ(r(t) − r)D (1)(t, t0)〉 = T 3p′′′(0)

m4
(

1
m
p′(0) + β

) (
2
m
p′(0) + β

)2 〈δ′′(r(t) − r)〉

×
[

1

β
(
β − 2

m
p′(0)

)
1
m
p′(0)

− β

4
(

1
m

p′(0) + β
)3 ( 2

m
p′(0) + 3β

)
− β − 2

m
p′(0)

2β
(

1
m

p′(0) + β
) (

2
m
p′(0) + 3β

)
1
m

p′(0)

]
. (5.26)

5.5. The diffusion equation in the proximity of the saddle point

By putting together all the results obtained, that is equations (5.3), (5.4), (5.4′), (5.20) and
(5.26), there follows the evolution equation for the two-time transition probability density valid
in the proximity of the saddle point for large t − t0, small temperature and high or moderate
values of frictional coefficient

∂P

∂t
= − ∂

∂r

[
1

m
p′(0)r − U ′′′′(0)

6
(

4
m
p′(0) + β

) r3

]
P(r) +

[
∂2

∂r2

(
− T

U ′′(0)

1

m
p′(0)

)

+
∂4

∂r4

T 3U ′′′′(0)

2m2p′(0)2
(

1
m
p′(0) + β

)4 ( 4
m

p′(0) + β
)
]

P(r) (5.27)

which admits as an equilibrium solution the canonical Gibbs distribution of probability density
in coordinate space, up to O

(
1
R2

)
. This is also true for positive U ′′(0), which means that the

point with coordinate r = 0 is a point of stable equilibrium. Consequently there results that

Peq ∝ exp

{
−

1
2U ′′(0)r2 + 1

24U ′′′′(0)r4

T

}
(5.28)
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is the stable equilibrium solution around the extrema of potential energy, if deviations from
linearity of the force are taken into account, up to O

(
1
R2

)
.

Note that the first singular solution can equally be considered as a solution of equation
(2.10), which leads to the substitution

1

m
p′(0) → − 1

m
p′(0) − β. (5.29)

Some convergence problems may, however, arise in the derivation of (5.27), in the case the
extremum is a maximum point. Actually, the following statement can be proved: in the
vicinity of a maximum point of the potential energy function with high or moderate frictional
coefficient, the diffusion coefficient relative to the first singular solution diverges, while that
which refers to the second singular solution is convergent.

Proof. Let us consider the expression for the diffusion coefficient which was obtained in [18],
equation (6.14). This is exact in the limit of high frictional coefficient or a perfectly parabolic
potential profile. In either case there results

1

t − σ

∫ t

σ

U ′′(r(α)) dα ∼= U ′′(0). (5.30)

Therefore, calling 1
m
p′(0)± the two roots of equation (2.10), from equation (6.14) of [18]

follows

D(t, t0) = 2βT

m

∫ t

t0

dσ exp

{
1

2m
(p′(0)+ + p′(0)−)(t − σ)

}

×
[

exp

{
1

2m
(p′(0)+ − p′(0)−)(t − σ)

}

− exp

{
− 1

2m
(p′(0)+ − p′(0)−)(t − σ)

}]

× exp

{
1

m
p′(0)−(t − σ)

}(
1

m
p′(0)+ − 1

m
p′(0)−

)−1

= 2βT

m

∫ t

t0

dσ

[
exp

{
1

m
(p′(0)+ + p′(0)−)(t − σ)

}

− exp

{
2

m
p′(0)−(t − σ)

}](
1

m
p′(0)+ − 1

m
p′(0)−

)−1

. (5.31)

This is always convergent for U ′′(0) �
< 0. Conversely, by interchanging p′(0)+ with p′(0)−, it

can be ascertained that the result diverges for t − t0 → +∞ and U ′′(0) � 0. �

This result is in consistent with the formula

D(q) = −T
p(q)

mU ′(q)
+ O(T 2) (5.32)

which can be deduced from the requirement that the stationary equilibrium probability density
should be canonical.

6. Expansion in inverse powers of β

Expanding the coefficients of the evolution equation which was obtained in equation (5.27) in
powers of 1

β
there results
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∂P

∂t
= ∂

∂r

[(
U ′′(0)

mβ
+

U ′′(0)2

m2β3
+ 2

U ′′(0)3

m3β5
+ 5

U ′′(0)4

m4β7

)
r

+
U ′′′′(0)

6m

(
1

β
+

4U ′′(0)

mβ3
+

20U ′′(0)2

m2β5
+ 104

U ′′(0)3

m3β7

)
r3

]
P(r, t)

+
∂2

∂r2

T

U ′′(0)

(
U ′′(0)

mβ
+

U ′′(0)2

m2β3
+

2U ′′(0)3

m3β5
+

5U ′′(0)4

m4β7

)
P(r, t)

+
∂4

∂r4

T 3U ′′′′(0)

2m4

(
m2

β3U ′′(0)
+

6m

β5U ′′(0)
+

33

β7

)
P(r, t) + h.o.t. (6.1)

This equation is markedly different from that which was obtained in [17] (see also [18]) by an
expansion in powers of 1

β
of the same functional D(t, t0), or in [34] where the same expansion

(4.2) was used as in this work. We rewrite those previous results in the present notation, so as
to make comparison easier:

∂P

∂t
= ∂

∂r

[(
U ′′(0)

mβ
+

U ′′(0)2

m2β3
+ 2

U ′′(0)3

m3β5
+ 5

U ′′(0)4

m4β7

)
r

+
U ′′′′(0)

6m

(
1

β
+

4U ′′(0)

mβ3
+ 20

U ′′(0)2

m2β5
+ 104

U ′′(0)3

m3β7

)
r3

]
P(r, t)

+
∂2

∂r2
T

(
1

mβ
+

U ′′(0)

m2β3
+ 2

U ′′(0)2

m3β5
+ 5

U ′′(0)3

m4β7

)

+ U ′′′′(0)

(
1

2m2β3
+

9

2

U ′′(0)

m3β5
+ 31

U ′′(0)2

m4β7

)
r2

]
P(r, t)

+
∂3

∂r3
T 2

[(
3

2

1

m3β5
+

103

6

U ′′(0)

m4β7

)]
U ′′′′(0)r +

59

9

U ′′′′(0)2

m4β7
r3

]
P(r, t)

+
∂4

∂r4
T 3 8

3

U ′′′′(0)

m4β7
P(r, t) + h.o.t. (6.2)

Equations (6.1) and (6.2) are asymptotic equations which are valid after a time interval
t − t0 � 1

β
has elapsed from the original time t0. It can be verified that they admit the

same stationary distribution of probability density as a solution. Consequently, they have
in common the stationary equilibrium solutions to some second-order differential equation,
with the same drift velocity which appears in both equations above. The Green function of
this second-order equation can be interpreted, under suitable conditions [19], as the two-time
transitional probability density in the asymptotic regime.

7. Reduction to a second-order equation

The fourth-order equation (5.27) for the asymptotic two-time transition probability density
can be transformed into a lower order integro-differential equation which incorporates suitable
boundary conditions. To this end we rewrite it in the form of the following eigenvalue equation
in a Kramers–Moyal expansion up to the fourth-order derivative:(

∂4

∂r4
D2 +

∂2

∂r2
D0

)
Pλ(r) = ∂

∂r

1

m
p(r)Pλ(r) − λPλ(r) (7.1)

where D2 and D0 are defined according to equation (5.27) and −λ is the eigenvalue. Let us
note that
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(
∂2

∂ρ2
D2 + D0

)√
D2

D0
h(r − ρ) sin

√
D0

D2
(r − ρ) = D2 δ(r − ρ) (7.2)

according to the definition of equality in distribution theory [35]. Then from equation (7.1)
we get∫ +∞

−∞
dρ

√
D2

D0
h(r − ρ) sin

√
D0

D2
(r − ρ)

(
∂2

∂ρ2
D2 + D0

)
∂2

∂ρ2
Pλ(ρ)

=
∫ +∞

−∞
dρ

√
D2

D0
h(r − ρ) sin

√
D0

D2
(r − ρ)

(
∂

∂ρ

1

m
p(ρ) − λ

)
Pλ(ρ). (7.3)

We recall that in the formulae above h(α) and δ(α) are the Heaviside and Dirac functions
of argument α, respectively. Then equation (7.3) upon repeated integration by parts with the
appropriate boundary conditions at minus infinity yields[

∂3

∂r3

D2

mD0
p(r) +

∂2

∂r2
D0

]
Pλ(r) =

[
∂

∂r

1

m
p(r) − λ + λ

D2

D0

∂2

∂r2

]
Pλ(r) + O

(
D2

2

D2
0

)
(7.4)

where terms which are higher order in r/R have been neglected. Now we substitute[
∂3

∂r3

D2

mD0
p(r) +

∂2

∂r2
D0

]
Pλ(r) ∼=

[
D2

mD0
p(r)

∂3

∂r3
+

(
3D2

mD0
p′(r) + D0

)
∂2

∂r2

]
Pλ(r).

(7.5)

The terms which have been omitted are higher order as T → 0. Then we multiply both
members of equation (7.4) (with substitution (7.5)) by e+τ(r) where

dτ

dr
= +

(
2p′(r)
p(r)

+
mD2

0

D2p(r)

)
≷ 0 (7.6)

according to r ≷ 0, as results from equations (5.4), (5.4′) and (5.27). We have

τ (r) = 2 ln|p(r)| +
mD2

0

D2p′(0)

[
ln|r| − 1

2
ln

(
r2 +

6p′(0)

p′′′(0)

)]
. (7.7)

Upon integration from ρ = 0 to ρ = r is obtained the integro-differential equation

eτ(r) D2

D0

1

m
p(r)

∂2

∂r2
Pλ(r) =

∫ r

0
dρ eτ(ρ)

(
∂

∂ρ

1

m
p(ρ) − λ +

λD2

D0

∂2

∂ρ2

)
Pλ(ρ) (7.8)

which yields, upon integration by parts and multiplication by mD2
0

D2
[36]:

D0p(r)
∂2

∂r2
Pλ(r) = eτ(ρ)−τ(r) mD2

0

D2

∞∑
n=0

(
−dρ

dτ

∂

∂ρ

)n dρ

dτ

×
[

∂

∂ρ

1

m
p(ρ) − λ + λ

D2

D0

∂2

∂ρ2

]
Pλ(ρ)

∣∣∣∣
r

0

. (7.9)

After expansion of the coefficients of this equation up to O
(

1
R2

)
there results, with

p′(0) �= 0 (or, equivalently U ′′(0) �= 0):[
D0

∂2

∂r2
+

D2

m2D2
0

∂

∂r
p(r)

∂

∂r
p(r)

]
Pλ(r) +

[
− ∂

∂r

1

m
p(r)+

2D2

m2D2
0

p′(r)
∂

∂r
p(r)

]
Pλ(r)

= λ

[
D2

D0

∂2

∂r2
+

D2

mD2
0

∂

∂r
p(r) − 1 +

2D2

mD2
0

p′(r)
]

Pλ(r). (7.10)
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This equation needs to be fulfilled to leading order in T at low temperature because the
temperature dependence of the mean velocity has been neglected (equation (2.1)). Therefore,
the steady equilibrium state (λ = 0 and zero current) Peq(r) must satisfy[

D0 +
D2

m2D2
0

p(r)2

]
∂

∂r
Peq(r) = 1

m
p(r)Peq(r). (7.11)

Equation (5.28) yields the solution to equation (7.11) up to O
(

1
R2

)
, as expected. The diffusion

coefficient has exactly the form required to fulfil this condition.

8. Conclusions

In this paper, we have analysed the solutions to the HJY equation (which is the low-temperature
limit of the HJYR equation) which are obtained by equating to zero the time derivative of
the action [18]. There result singular solutions [18] which are most suitable to represent the
drift component of velocity in a diffusion process to which the system is submitted. These
singular solutions have been compared with those pertaining to the frictionless system, which
are obtained by equating to zero the derivatives of the complete integral (the action) over the
two arbitrary parameters [18]. Moreover, it has been shown that these singular solutions, in
the neighbourhood of an extremum of the potential energy, may exhibit two different types
of characteristic behaviour, depending upon the values of the momentum. This behaviour has
been made explicit for each type, through an expansion which is valid in the environment of
the extremum. For high values of frictional coefficient β, the result is that the first singular
solution (as defined in [13, 18]), may belong to either of the two classes specified above, while
the second singular solution always belongs to the same class, in every stationary point of
the potential. This has been proved for solutions which may be represented by power series
expansion in 1/β. For low values of β, every solution belongs in general to both classes.

In the remaining part of this paper (from section 4 onwards), a diffusion process in
a quartic double-well unidimensional potential profile has been considered, by assuming
that the drift is well represented by the second singular solution to the HJY equation,
in the region of high or moderate frictional forces. Making use of the results proved in
sections 2 and 3, the solutions to the HJY equation near the extremum of the potential energy
have been calculated, and the diffusion coefficient has been evaluated including nonlinearity.
The correlation functions of position which are needed have been evaluated for the linearized
system, by assuming canonical equilibrium in configuration space, which results for the
linearized system (see [13, 19]).

To first order in the parameter of nonlinearity, the result is a fourth-order equation for the
two-time transition probability density, which admits the projected canonical distribution as
an equilibrium probability density, consistent with the assumptions that have been made in
order to evaluate the correlation functions.

The coefficients of this equation not being expanded in inverse powers of β, their validity
has no limitations except for the assumptions made about the local validity of the solutions.
This equation is expected to be valuable as a tool for investigating properties of diffusion and
fluctuations in the proximity of a barrier. In fact, it has been shown in section 5 that only the
second singular solution yields consistent results in this context, for strong frictional forces.

Actually, this diffusion operator is unexpectedly nonunique, as it results also from a
similar calculation in [10], and we do not dispose at present of any criterion for selecting the
best operator for some specific problem (see, however, the introduction for a possible approach
to this problem). Now given that the equations that have been obtained are correct and that the
memory of initial data has been eliminated by the asymptotic limiting procedure, the only way
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to preserve unequivocally a physical significance to the equations is by assuming that they have
in common a subset of solutions which satisfy a second-order equation, as has been shown in
[10]. The diffusion operator that we have obtained can therefore be reduced to second order
by standard methods, and the second-order diffusion coefficient is in fact uniquely defined
(see equation (5.32)), because of the uniqueness of the stationary equilibrium solution. We
consider therefore the second-order equation (7.10) as the main result of this work, which can
be applied to the calculation of transition times or first-passage times [6–10, 37] across the
barrier.

Generally speaking, as the order of the equations increases, the higher derivatives can be
eliminated among several independent equations describing the same process, thus reducing
the number of initial data which are necessary to specify the physical process.

The fact that the character of the second singular solution necessarily changes at some
of the extrema (see section 3), may bear nontrivial consequences in the turn-over problem
[4, 10], as may be guessed from equation (5.32). It is hoped to examine this topic in greater
detail in a forthcoming paper [38].
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